1,001 research outputs found

    Characterization of Jets in Relativistic Heavy Ion Collisions

    Full text link
    Jet quenching is considered to be one of the signatures of the formation of quark gluon plasma. In order to investigate the jet quenching, it is necessary to detect jets produced in relativistic heavy ion collisions, determine their properties and compare those with the jets one obtains in hadron-hadron or e+−e−e^+-e^- collisions. In this work, we propose that calculation of flow parameters may be used to detect and characterize jets in relativistic heavy ion collisions.Comment: 18 pages, 4 figures, more discussions are added, to be published in Phys. Rev.

    On the Limitations of Neutrino Emissivity Formula of Iwamoto

    Full text link
    The neutrino emissivity from two and three flavour quark matter is numerically calculated and compared with Iwamoto's formula. We find that the calculated emissivity is smaller than Iwamoto's result by orders of magnitude when pf(u)+pf(e)−pf(d(s))p_{f}(u)+p_{f}(e)-p_{f}(d(s)) is comparable with the temperature. We attribute it to the severe restriction imposed by momentum conservation on the phase space integral. We obtain an alternate formula for the neutrino emissivity which is valid when the quarks and electrons are degenerate and pf(u) + pf(e) − pf(d(s))p_{f}(u)~+~p_{f}(e)~-~p_{f}(d(s)) is large compared to the temperature.Comment: Latex Version 2.09, 15 pages, 5 postscript figures available upon request, preprint No. IP/BBSR/93-6

    Neutrino Emissivity of Dense Stars

    Get PDF
    The neutrino emissivity of compact stars is investigated in this work. We consider stars consisting of nuclear as well as quark matter for this purpose. Different models are used to calculate the composition of nuclear and quark matter and the neutrino emissivity. Depending on the model under consideration, the neutrino emissivity of nuclear as well as quark matter varies over a wide range. We find that for nuclear matter, the direct URCA processes are allowed for most of the relativistic models without and with strange baryons, whereas for the nonrelativistic models this shows a strong dependence on the type of nuclear interaction employed. When the direct URCA processes are allowed, the neutrino emissivity of hadronic matter is larger than that of the quark matter by several orders of magnitude. We also find that the neutrino emissivity departs from T6T^6 behavior when the temperature is larger than the difference in the Fermi momenta of the particles, participating in the neutrino-producing reactions.Comment: Latex file. 5 figures available on request. accepted in Int. J. Mod. Phys.
    • …
    corecore